... and now for something completely different...

Set Theory

Actually, you will see that logic and set theory are very closely related.

Spring 2003

Set Theory

- Set: Collection of objects (called elements)
- a∈A "a is an element of A" "a is a member of A"
- a∉A "a is not an element of A"
- A = {a₁, a₂, ..., a_n} "A contains a₁, ..., a_n"
- Order of elements is insignificant
- It does not matter how often the same element is listed (repetition doesn't count).

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements.

Examples:

- $A = \{9, 2, 7, -3\}, B = \{7, 9, -3, 2\}: A = B$
- A = {dog, cat, horse},
 B = {cat, horse, squirrel, dog}:
 A ≠ B
- A = {dog, cat, horse},
 B = {cat, horse, dog, dog} :

A = B

Examples for Sets

 $N = \{0, 1, 2, 3, ...\}$

 $Z^{+} = \{1, 2, 3, 4, ...\}$

R = $\{47.3, -12, \pi, ...\}$

 $Z = \{..., -2, -1, 0, 1, 2, ...\}$

"Standard" Sets:

- Natural numbers
- Integers
- Positive Integers
- Real Numbers
- Rational Numbers Q = {1.5, 2.6, -3.8, 15, ...}
 (correct definitions will follow)

Examples for Sets

- A = Ø "empty set/null set"
- $A = \{z\}$ Note: $z \in A$, but $z \neq \{z\}$
- A = {{b, c}, {c, x, d}} set of sets
- $A = \{\{x, y\}\}$ Note: $\{x, y\} \in A$, but $\{x, y\} \neq \{\{x, y\}\}$
- A = {x | P(x)} "set of all x such that P(x)"
 P(x) is the membership function of set A
 - $\forall x (P(x) \rightarrow x \in A)$
- A = {x | x∈ N ∧ x > 7} = {8, 9, 10, ...}
 "set builder notation"

Examples for Sets

We are now able to define the set of rational numbers Q:

Q = $\{a/b \mid a \in Z \land b \in Z^+\}$, or Q = $\{a/b \mid a \in Z \land b \in Z \land b \neq 0\}$

And how about the set of real numbers R? **R** = {**r** | **r** is a real number} That is the best we can do. It can neither be defined by enumeration nor builder function.

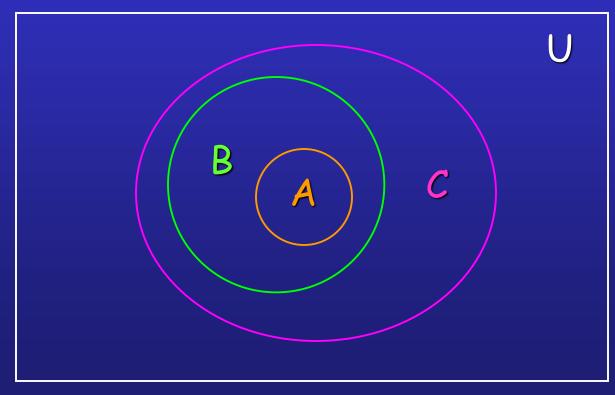
Subsets

 $A \subseteq B$ "A is a subset of B" $A \subseteq B$ if and only if every element of A is also an element of B. We can completely formalize this: $A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$ Examples: $A = \{3, 9\}, B = \{5, 9, 1, 3\},\$ $A \subset B$? true $A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\},\$ $A \subset B$? true $A = \{1, 2, 3\}, B = \{2, 3, 4\},$ $A \subset B$? false

Subsets

Useful rules:

- $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
- $(A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C$ (see Venn Diagram)



Subsets

Useful rules:

- Ø ⊆ A for any set A
 (but Ø ∈ A may not hold for any set A)
- $A \subseteq A$ for any set A

Proper subsets: $A \subset B$ "A is a proper subset of B" $A \subset B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \land x \notin A))$ or $A \subset B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B) \land \neg \forall x \ (x \in B \rightarrow x \in A))$

Cardinality of Sets

If a set S contains n distinct elements, $n \in N$, we call S a finite set with cardinality n.

Examples: $A = \{Mercedes, BMW, Porsche\}, |A| = 3$ $B = \{1, \{2, 3\}, \{4, 5\}, 6\}$ $B = \{1, \{2, 3\}, \{4, 5\}, 6\}$ $C = \emptyset$ $C = \emptyset$ $D = \{x \in \mathbb{N} \mid x \le 7000\}$ $D = \{x \in \mathbb{N} \mid x \ge 7000\}$ $E = \{x \in \mathbb{N} \mid x \ge 7000\}$ $E = \{x \in \mathbb{N} \mid x \ge 7000\}$

The Power Set

 $\begin{array}{l} \mathsf{P}(A) & \text{``power set of } A'' \text{ (also written as } 2^A) \\ \mathsf{P}(A) = \{\mathsf{B} \mid \mathsf{B} \subseteq A\} & \text{(contains all subsets of } A) \end{array}$

Examples:

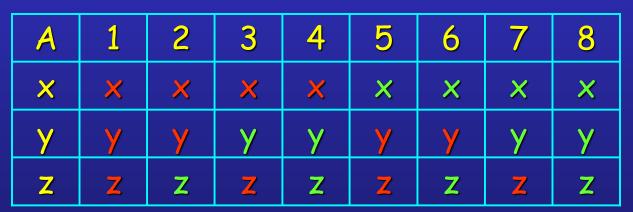
 $A = \{x, y, z\}$ $P(A) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$

 $A = \emptyset$ $P(A) = \{\emptyset\}$ Note: |A| = 0, |P(A)| = 1

The Power Set

Cardinality of power sets: | P(A) | = 2|A|

- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one subset of A, thus one element in P(A)



 For 3 elements in A, there are 2×2×2 = 8 elements in P(A)

Cartesian Product

The ordered n-tuple $(a_1, a_2, a_3, ..., a_n)$ is an ordered collection of n objects. Two ordered n-tuples $(a_1, a_2, a_3, ..., a_n)$ and $(b_1, b_2, b_3, ..., b_n)$ are equal if and only if they contain exactly the same elements in the same order, i.e. $a_i = b_i$ for $1 \le i \le n$.

The Cartesian product of two sets is defined as: $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Cartesian Product

Example: A = {good, bad}, B = {student, prof} $A \times B = \{ \setminus$ (good, student), (good, prof), (bad, student), (bad, prof) B×A = {(student, good), (prof, good), (student, bad), (prof, bad)} Example: $A = \{x, y\}, B = \{a, b, c\}$ $A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}$

Cartesian Product

Note that:

- **A**ר = Ø
- Ø×A = Ø
- For non-empty sets A and B: $A \neq B \Leftrightarrow A \times B \neq B \times A$
- $\bullet |\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$

The Cartesian product of two or more sets is defined as:

 $\textbf{A}_1 \!\!\times \!\!\textbf{A}_2 \!\!\times \!\! ... \!\!\times \!\!\textbf{A}_n = \{(a_1, a_2, ..., a_n) \mid a_i \!\in \! \textbf{A}_i \text{ for } 1 \leq i \leq n\}$

Set Operations

Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Example: A = {a, b}, B = {b, c, d} A∪B = {a, b, c, d}

Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$ Example: $A = \{a, b\}, B = \{b, c, d\}$ $A \cap B = \{b\}$ Cardinality: $|A \cup B| = |A| + |B| - |A \cap B|$

Spring 2003